Smed-dynA-1 is a planarian nervous system specific dynamin 1 homolog required for normal locomotion
نویسندگان
چکیده
Dynamins are GTPases that are required for separation of vesicles from the plasma membrane and thus are key regulators of endocytosis in eukaryotic cells. This role for dynamin proteins is especially crucial for the proper function of neurons, where they ensure that synaptic vesicles and their neurotransmitter cargo are recycled in the presynaptic cell. Here we have characterized the dynamin protein family in the freshwater planarian Schmidtea mediterranea and showed that it possesses six dynamins with tissue specific expression profiles. Of these six planarian homologs, two are necessary for normal tissue homeostasis, and the loss of another, Smed-dynA-1, leads to an abnormal behavioral phenotype, which we have quantified using automated center of mass tracking. Smed-dynA-1 is primarily expressed in the planarian nervous system and is a functional homolog of the mammalian Dynamin I. The distinct expression profiles of the six dynamin genes makes planarians an interesting new system to reveal novel dynamin functions, which may be determined by their differential tissue localization. The observed complexity of neurotransmitter regulation combined with the tools of quantitative behavioral assays as a functional readout for neuronal activity, renders planarians an ideal system for studying how the nervous system controls behavior.
منابع مشابه
Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling.
We have identified two genes, Smed-PTEN-1 and Smed-PTEN-2, capable of regulating stem cell function in the planarian Schmidtea mediterranea. Both genes encode proteins homologous to the mammalian tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Inactivation of Smed-PTEN-1 and -2 by RNA interference (RNAi) in planarians disrupts regeneration, and leads to abnorma...
متن کاملNeuronal sources of hedgehog modulate neurogenesis in the adult planarian brain
The asexual freshwater planarian is a constitutive adult, whose central nervous system (CNS) is in a state of constant homeostatic neurogenesis. However, very little is known about the extrinsic signals that act on planarian stem cells to modulate rates of neurogenesis. We have identified two planarian homeobox transcription factors, Smed-nkx2.1 and Smed-arx, which are required for the maintena...
متن کاملTissue absence initiates regeneration through Follistatin-mediated inhibition of Activin signaling
Regeneration is widespread, but mechanisms that activate regeneration remain mysterious. Planarians are capable of whole-body regeneration and mount distinct molecular responses to wounds that result in tissue absence and those that do not. A major question is how these distinct responses are activated. We describe a follistatin homolog (Smed-follistatin) required for planarian regeneration. Sm...
متن کاملTranscription factors lhx1/5-1 and pitx are required for the maintenance and regeneration of serotonergic neurons in planarians.
In contrast to most adult organisms, freshwater planarians can regenerate any injured body part, including their entire nervous system. This allows for the analysis of genes required for both the maintenance and regeneration of specific neural subtypes. In addition, the loss of specific neural subtypes may uncover previously unknown behavioral roles for that neural population in the context of ...
متن کاملThe planarian TCF/LEF factor Smed-tcf1 is required for the regeneration of dorsal-lateral neuronal subtypes.
The adult brain of the planarian Schmidtea mediterranea (a freshwater flatworm) is a dynamic structure with constant cell turnover as well as the ability to completely regenerate de novo. Despite this, function and pattern is achieved in a reproducible manner from individual to individual in terms of the correct spatial and temporal production of specific neuronal subtypes. Although several sig...
متن کامل